The Wharton School, University of Pennsylvania
Course Syllabus

OIDD 931 - STOCHASTIC MODELS II

Q3, Jan 16 - March 5, 2020

Status: January 8, 2020

Instructor: Professor Maria Rieders
Operations and Information Management Department
The Wharton School
University of Pennsylvania

Office: 517 Jon M. Huntsman Hall
Phone: (215) 898-0535
e-mail: rieders@wharton.upenn.edu

Lectures: Tuesday, Thursday 10:30 am – noon, JMHH F 96
Office hours: TBA

Evaluation: Weekly/biweekly homework assignments (35%);
participation (10%);
final exam (55%)

Prerequisites: Calculus (including differential equations), linear algebra, probability
(no measure theory required), stochastic models as in OIDD 930

Texts: - Ross Stochastic Processes, 2nd edt, Wiley (required)
- Karlin and Taylor A First Course in Stochastic Processes, 2nd edt., 1975,
 Academic Press (recommended)
- Copies of these texts as well as some other books of interest have been put
 on reserve at the Lippincott library.
- Class handouts and assignments will be made available on the course website.

Course Description:

This is the second part of our Stochastic Models course sequence. We start by revisiting
continuous time Markov chains, with a special focus on computational methods and time
reversibility. Building on the elementary counting processes presented in Stochastic Models I, we
now study the more general theory of renewal processes. Of particular interest are limiting results
such as the Key Renewal Theorem that enable us to calculate long run performance measures of
interest. We then introduce martingales which provide a basic approach for studying applied
probability models. Martingales will prove particularly useful in analyzing Brownian motion
processes. Besides presenting general results on Brownian motion, we will look at applications
including some financial models of interest.
Course Topics:

A tentative course outline follows. Content and focus may vary based on student background and interest.

<table>
<thead>
<tr>
<th>Topic 1</th>
<th>Continuous Markov Chains – Computational Methods</th>
</tr>
</thead>
<tbody>
<tr>
<td>Topic 2</td>
<td>Time Reversibility</td>
</tr>
<tr>
<td>Topic 3</td>
<td>Renewal Processes – Basic Results</td>
</tr>
<tr>
<td>Topic 4</td>
<td>Renewal Processes - Key Renewal Theorem</td>
</tr>
<tr>
<td>Topic 5</td>
<td>Renewal Theory - Related Processes</td>
</tr>
<tr>
<td>Topic 6</td>
<td>Branching Processes</td>
</tr>
<tr>
<td>Topic 7</td>
<td>Martingales</td>
</tr>
<tr>
<td>Topic 8</td>
<td>Brownian Motion</td>
</tr>
</tbody>
</table>

Website:

We will be using a Canvas website that facilitates information sharing, course logistics and assignments. To access your Canvas site, go to https://canvas.upenn.edu/courses/xxxxx
Please, check the Canvas website frequently during the semester for up to date information, assignments, and class handouts.

Homework:

Assignments will be given on a weekly/biweekly basis. Please, submit a hard copy of your solutions at the beginning of class on the due date listed; if you can’t make the deadline due to extenuating circumstances, please ask the instructor before the due-date for a possible extension. Unless otherwise stated, homework is to be done individually. You are encouraged to discuss the problems (and any of the material covered in class) with each other; yet the work that you submit must be your own. If you benefited from discussions with a peer, please do acknowledge the collaboration. Students are expected to refrain from soliciting solutions from other sources (e.g. internet, previous years’ classes, etc). If you do use outside information, academic honesty requires you to state such sources.

Participation:

This is a Ph.D. level course. Our class sessions are meant to provide a learning environment that involves all participants. I am always open for questions, both inside the classroom and during office hours. Students are expected to come prepared to class, ask relevant questions, and actively participate in classroom discussions.

Exams:

There will be an open book final exam, on Thursday, March 5 during class.