Course Description

The course covers fixed income securities (including fixed income derivatives) and provides an introduction to these securities and the markets in which they are traded, as well as to the tools that are used to value them and to assess and manage their risk.

Quantitative models play a critical role in the valuation and management of fixed income securities. Although every effort will be made to introduce these models as intuitively as possible and the technical requirements are limited to basic calculus and statistics, the class is by its nature quantitative and will require a steady amount of work.

In addition, some computer proficiency will be required for the assignments, although familiarity with a spreadsheet program (such as Microsoft Excel) will suffice.

Prerequisites

The prerequisites for this course are the introductory finance and statistics courses, i.e., FNCE 100/611 and STAT 101/621.

Textbook and Readings

The course will be based primarily on lecture notes (copies of the slides used in class) and on the following recommended textbook:


The lecture notes will be made available ahead of each class through Canvas.

Requirements and Grading

The final grade for the course will be based on class participation and three home assignments, with the following weights:

- Class participation: 10%
- Assignment 1: 25%
- Assignment 2: 30%
- Assignment 3: 35%
Course Outline

Below is a tentative outline of the course, illustrating the planned progression of topics and the corresponding readings.

PART 1: PRELIMINARIES

I. The Market for Fixed Income Securities
Lecture notes and Textbook, Sections 1.1-1.2 and 1.6-1.7

II. Interest Rates and Discount Factors
Lecture notes and Textbook, Sections 2.1-2.3, 5.1 and 7.3

PART 2: RISK-FREE BONDS

III. Treasury Securities
Lecture notes and Textbook, Sections 2.4-2.8

IV. The Term Structure of Treasury Rates
Lecture notes and Textbook, Section 2.9

V. Interest Rate Risk Management: Duration and Convexity
Lecture notes and Textbook, Chapter 3 and Section 4.1

VI. Interest Rate Risk Management: Factor Models
Lecture notes and Textbook, Sections 4.2-4.6

PART 3: FORWARDS AND INTEREST RATE SWAPS

VII. Key Money Market Rates
Lecture notes and Textbook, Sections 1.3-1.4 and 7.1

VIII. Fixed Income Forwards
Lecture notes and Textbook, Sections 5.2-5.3

IX. Interest Rate Swaps
Lecture notes and Textbook, Sections 5.4-5.5

PART 4: FUTURES, OPTIONS AND BINOMIAL INTEREST RATE MODELS

X. Binomial Interest Rate Trees: Introduction
Lecture notes and Textbook, Section 6.2 and Chapters 9-10

XI. Binomial Interest Rate Trees: Refinements
Lecture notes and Textbook, Sections 11.2.1, 11.2.3 and 12.1

XII. The Ho-Lee and Simple Black-Derman-Toy Models
Lecture notes and Textbook, Section 11.1

XIII. Fixed Income Futures: Introduction
Lecture notes and Textbook, Section 6.1

XIV. Fixed Income Futures: Refinements
Lecture notes and Textbook, Sections 6.5 and 11.4

XV. Fixed Income Futures Options
Lecture notes
XVI. Interest Rate Caps and Floors
Lecture notes and Textbook, Sections 11.2.2 and 20.1.1-20.1.3

XVII. The Black-Derman-Toy Model
Lecture notes and Textbook, Sections 11.3, 11.5 and 20.1.4

XVIII. Interest Rate Swaptions
Lecture notes and Textbook, Sections 11.2.4, 12.2 and 20.2

PART 5: MORTGAGE-BACKED SECURITIES

XIX. Monte Carlo Simulation
Lecture notes and Textbook, Sections 13.1-13.5

XX. Mortgage-Backed Securities
Lecture notes and Textbook, Section 1.5, Chapter 8 and Sections 12.3 and 13.6

PART 6: CONTINUOUS-TIME INTEREST RATE MODELS

XXI. The Continuous-Time Ho-Lee Model
Lecture notes and Textbook, Sections 14.1, 14.3, and 19.1-19.2

XXII. The Hull-White Model
Lecture notes and Textbook, Sections 19.3-19.4 and 22.3.3

PART 7: CORPORATE BONDS AND CREDIT DERIVATIVES

XXIII. Corporate Bonds
Lecture notes

XXIV. Credit Default Swaps
Lecture notes