ACCT270: Predictive Analytics using Financial Disclosures

Instructor: Prof. Daniel Taylor
Office: SHDH 1312
Office hours: TBD
Email: dtayl@wharton.upenn.edu

Course Description

Annual reports, financial statements, and other mandatory disclosures contain large amounts of financial data that provide the foundation for a variety of forward-looking decisions. Recent trends in Big Data and predictive analytics are revolutionizing the way businesses and investors extract meaningful insights from these disclosures. This course teaches students the hands-on skills necessary to manipulate large-scale financial databases and build predictive models useful for strategic and investment decisions.

The course will cover three applications of predictive analytics in this setting: (i) forecasting future earnings, (ii) predicting accounting fraud, and (iii) detecting insider trading. The course will draw on cutting-edge academic research in each area; introduce students to the basic SQL coding skills necessary to manipulate Big Data and conduct meaningful analyses; and leverage the datasets and computing power of Wharton Research Data Services.

The course is organized as a hybrid of a traditional seminar course and a computer science course. The first few classes of each unit will cover the conceptual material and source material related to each topic. The later classes in each unit will cover the technical material and programming skills needed to manipulate the respective datasets, estimate prediction models, and backtest algorithms.

Given the widespread use of financial disclosures and the growing use of Big Data, this course is valuable for students pursuing a broad variety of careers ranging from investment bankers and equity analysts to consultants and business managers.

Curriculum:

The course can be used to satisfy any of the following Wharton undergrad curriculum requirements: Business Breadth requirement; Technology Innovation and Analytics requirement; Analytics concentration; Accounting concentration.

Prerequisites:

Basic knowledge of financial statements and linear regression is required. Previous coding experience with Structured Query Language (SQL) is not required. The course is designed for students with no previous coding experience, and will provide students with basic SQL coding skills. Formal prerequisites: ACCT101 and STAT102. STAT102 may be taken concurrently, but knowledge of linear regression and hypothesis testing will be assumed.
Course Overview:

In ACCT101, you learned how to prepare financial statements. In STAT102, you learned how to run a regression. Perhaps you’ve taken a computer programming class. Throughout your time at Wharton you have been learning how to write, present, and work collaboratively with your peers. This class is going to push you to combine these skills: to extract meaningful insights from Big Data and communicate your insights to others.

The course begins with three sessions designed to orient you to the datasets we will study, and provide a basic primer on Structured Query Language (SQL). The datasets we will use in the class are very large (e.g., financial statements data for all publicly traded firms dating back to 1962)—you will not be able to analyze these datasets in Excel.

The remainder of the course is divided into three “units.” Each unit covers a different topic, and a different application of Big Data and predictive analytics: (1) forecasting future earnings + backtesting prediction models; (2) predicting accounting fraud; and (3) detecting insider trading. For each unit, students will complete and present a team project that entails computer programming, statistical analysis, and a group presentation.

Three units doesn’t seem like that much, but the final team project in each unit—developing statistical models that forecast earnings more accurately than Wall Street analysts (unit #1), improving existing fraud predictions models (unit #2), and designing algorithms to detect insider trading (unit #3)—represent a major accomplishment.

Because later material builds on prior classes, you will find that the entire process will go by smoothly if you take the weekly readings and assignments seriously. Some of the academic articles might seem intimidating at first, but it is important to go to the source material. Don’t worry if you do not understand everything. Learning is about knowing what you know, knowing what you don’t know, and knowing what questions to ask. My goal is to help you become more informed about the practice of predictive analytics as it relates to financial data. If you find yourself stuck on an individual or team assignment, don’t hesitate to reach out to me.

Assignments

Your course grade will be determined as follows:

<table>
<thead>
<tr>
<th>Component</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Individual Component</td>
<td>15%</td>
</tr>
<tr>
<td>Class Participation</td>
<td>15%</td>
</tr>
<tr>
<td>4 Individual Assignments / “Analyst reports” (10% each)</td>
<td>40%</td>
</tr>
<tr>
<td>Group Component</td>
<td>45%</td>
</tr>
<tr>
<td>3 Team Projects / “Team white papers” (15% each)</td>
<td>45%</td>
</tr>
</tbody>
</table>

Class Participation: Attendance will be taken, and participation will be recorded. In addition to discussing the required reading, many classes will feature in-class exercises in which you will work in small groups.

Individual Assignments: These assignments will take the form of a brief “analyst report” on a given topic. On the first day of class, a list of more than 500 stocks will be provided. Each
student will choose five stocks to “cover” for the duration of the class. Stock selection is due at the beginning of class #3. Each individual assignment will ask you to collect some data on these stocks and conduct rudimentary analyses. For example, one of the individual assignments asks you to collect and interpret data on insider trades 30 days before the most recent earnings announcements. You will write up your findings for all five stocks (~ 5 pages double-spaced) and submit it as an “analyst report.” All assignments are provided the first day of class.

Team Projects: These projects will test: (1) your conceptual understanding of the material; (2) your ability to manipulate and analyze big data; (3) your ability to convey your thoughts formally in presentations and technical writing; and (4) your ability to work together in a team with diverse personalities—effectively all of the talents needed to have a successful career.

There will be one team project for each of three units. On the last day of the unit, each team will submit a written “Team white paper” and present their paper to the class using a slide deck. For presentations, I expect you to dress as if you were presenting your analysis in a formal business environment (i.e., wearing formal business attire). All team members will receive the same score on team assignments, and scores will be assigned on an absolute basis not a relative basis (i.e., teams are not competing against each other).

All three team projects will be provided on the first day of class. You should budget your time and not wait until the last minute to get started. These projects are each significant accomplishments and will require significant investment from every team member. For example, it is not easy to forecast earnings more accurately than Wall Street analysts (e.g., those at Goldman Sachs), but it can be done and should make for a good story to tell recruiters!

The Importance of a Good Team

On the first day of class I will ask students to prepare and submit a brief biography and assess their strengths and weaknesses in terms of creative thinking, programming skill, statistical analysis, writing, and presentation. I will also ask students to provide estimated weekly availability for team work. This information will then be distributed to all students so that you may efficiently match with other students to build the best team (a list of teams is due by the third class). For example, if your schedule is constrained such that only Friday, Saturday, Sunday are free for out-of-class team work, you should probably seek out students with similar availability. By the same token, I recommend you seek out students whose skills complement your own. For example, if you are an excellent computer programmer but not fond of public speaking or writing, you should think about pairing with students who excel at writing and presenting (but who might not be the best programmers). Ideally, each member brings a different strength to the team and each members learn from other’s talents.

This course is a not an individual or team competition. You are not being graded relative to your peers. My goal is for you to learn, and push the frontiers of what you are capable of—both individually and working as a team. Effectively, to mimic what it is like to work as part of a small, dedicated team of analysts charged with a specific task (e.g., how it works in the real world!).
Grading disputes

All grading disputes must be appealed within one week following the return of the assignment. To have an individual assignment or team project re-graded, please submit a written description of your disagreement. For team projects, every member must sign the re-grade request. I reserve the right to review the entire assignment/project; thus your grade could go up or down.

Course Materials & Software

The datasets we will use in this class will usually range in size from 10GB to 30GB. To handle data of this size, we require both a programming language and software that is Taylor-made for large datasets.

SQL-programming language

The course will provide students with an introduction to Structured Query Language (SQL). SQL is ubiquitous in data science, and is at the heart of all relational databases including IBM’s DB2, Oracle, SQL Server, and Microsoft Access. Beyond managing data, SQL can be invoked in many popular statistical packages including SAS, R, and Matlab—making it a “must know” for anyone interested in analyzing large datasets. According to a Forbes July 2017 report, SQL is the 2nd most in-demand skill in data analysis (the most in-demand skill was “critical thinking”).

SAS-software

SQL is a programming language not a software interface. Thus, we need to use software to execute SQL commands. I will provide in-class instructions for SQL within SAS software. SAS is very widely-used in industry (specifically in banking and finance): 94% of the Fortune 100 use SAS. Importantly, all of the data vendors for this course provide their databases in native-SAS format. Why? Due to the nature of the software, SAS is faster than competing software at loading and manipulating Big Data. This is especially important for this course, as we will be working with the data in class (where waiting 10 minutes for a 10GB file to load is not practical). SAS is available for you to use remotely with “Virtual Lab” software, and is available for purchase at Penn Computer Connection. That being said, you may use whatever SQL-compliant software you like (e.g., R is a popular alternative).¹

Virtual Lab-software

Wharton Computing Labs has setup a virtual machine that will allow you to “remote connect” to a computer in the lab. You can then use the software and access the files as if you were physically in the lab. Software and installation instructions are available here.

¹ A word of caution about using R in the course. R is excellent for statistical analysis, however, it is not well-suited for the big datasets we will be using. R loads the entire dataset into RAM at once, other programs (including SAS) read file sections on demand. As such, the computer’s RAM limits the size of the file that R can open. This does not mean it is not possible to use R for this class, only that it is more cumbersome to manipulate large data files. e.g., if you only have 16GB RAM you will not be able to easily view a 20GB file using R.
All course materials are located on the course Canvas site. This site includes all readings, cases, PowerPoint slides, and assignments on each topic. There is no textbook for this course. Instead, I will provide a set of notes and readings.

Topic and Assignment Schedule

This course is a hybrid of a traditional seminar course that meets in the classroom, and a computer science course that meets in the computer lab. Programming classes, indicated below with *, will teach the programming aspect of the material and will cover a variety of in-class programming tasks related to the respective topic. These classes will be task-oriented, hands-on sessions: students will write code and work with data, real-time during class. All classes will meet in JMHH 300.

Class #1. Course Introduction
- Discuss Course Structure and Organization
- Provide list of stocks
- Provide all assignments
- Collect student biographies

Class #2. Introduction to Relation Databases
- Cover the concept of relation databases and database keys
- Cover the structure of basic financial datasets (CRSP, Compustat, IBES)

DUE: Select five stocks to cover

Class #3. Introduction to Structured Query Language (SQL)*
- Introduce concepts related to CREATE TABLE and JOIN statements

DUE: Select “analyst teams”

>>>>>>>>>> UNIT #1: FORECASTING FUTURE EARNINGS <<<<<<<<<

Class #4. Information Content of Earnings: Concepts
- Review accounting concepts related to earnings.
- Cover readings:
 - Beaver (1968), “The Information Content of Annual Earnings Announcements”
 Journal of Accounting Research
 Journal of Accounting Research

Class #5. Information Content of Earnings: Concepts
- Review accounting concepts related to earnings.
- Cover readings:

DUE: Individual Assignment #1

Class #6. Information Content of Earnings: Concepts

Review accounting concepts related to accrual accounting

Review the difference between earnings and cash flows

Cover readings:

Class #7. Information Content of Earnings: Concepts

Cover readings:

Class #8. Information Content of Earnings: Programming

Extracting data on past performance and earnings

Correlating past performance and earnings

Coding an “event study”

Class #9. Information Content of Earnings: Programming

Measuring earnings expectations and earnings surprise

Correlating deviations from expectations with future performance

Class #10. Information Content of Earnings: Programming

Decomposing earnings into cash and accrual components

Estimate persistence of cash and accrual components

Correlate accruals and cash components with future performance

DUE: Individual Assignment #2

Class #11. Predicting Earnings: Concepts

Review DuPont Analysis

Cover readings:

Class #12. Predicting Earnings: Programming*
- Merging data sources
- Code to calculate seasonal random walk forecast error
- Code to calculate analyst forecast error
- Replicate existing prediction models

Class #13. Predicting Earnings: Programming*
- Improving existing predictions models
- How to Backtest Forecasts I

Class #14. Predicting Earnings: Programming*
- How to Backtest Forecasts II
- Horse-race various forecast models

Class #15. Catchup & Programming Tutorials*

Class #16. Team Project Presentations (‘Building a Better Earnings Forecast’)*

> >>>>>>>>>>>>>>> UNIT #3: DETECTING ACCOUNTING FRAUD <<<<<<<<<<<<<<<<

Class #17. Accounting Fraud: Concepts*
- Famous cases of earnings management
- Cover readings:
 - Dechow, Hutton, and Sloan (1996) “Causes and Consequences of Earnings Manipulation: An Analysis of Firms Subject to Enforcement Actions by the SEC.” *Contemporary Accounting Research*

DUE: Individual Assignment #3*

Class #18. Accounting Fraud: Concepts*
- Dechow, Ge, Larson, and Sloan (2011), “Predicting Material Accounting Misstatements” *Contemporary Accounting Research*
Class #19. Accounting Fraud: Programming*
 Introduction to AuditAnalytics data
 Introduction to SEC AAER data
 Replicate existing fraud prediction algorithms

Class #20. Accounting Fraud: Programming *
 Incorporate additional data in existing algorithms
 Backtest new algorithms

Class #21. Accounting Fraud: Programming *
 Incorporate additional data in existing algorithms
 Backtest new algorithms

Class #22. Team Project Presentations (“Predicting Accounting Fraud”)

>>>>>>>>>>>>>>>>> UNIT #4: DETECTING INSIDER TRADING <<<<<<<<<<<<<<<<<<

Class #23. Insider Trading: Concepts
 Jagolinzer, Larcker, and Taylor (2012) “Corporate governance and the information
 content of insider trades” Journal of Accounting Research
 Arif, Kepler, Schroeder, and Taylor (2017) “Audit Process, Private Information, and
 Insider Trading” working paper.

 DUE: Individual Assignment #4

Class #24. Insider Trading: Programming*
 Introduction to disaggregated trading data
 Aggregating trade to the person-level, company-level

Class #25. Insider Trading: Programming*
 Replicating existing insider trading detection algorithms

Class #26. Insider Trading: Programming*
 Incorporate additional data in existing algorithms
 Backtest new algorithms

Class #27. Insider Trading: Programming*
 Incorporate additional data in existing algorithms
 Backtest new algorithms

Class #28. Team Project Presentations (“Detecting Insider Trading”)
Should you take this course? Is this course relevant? Here are some thoughts on the material and syllabus from professionals:

“FinTech is revolutionizing asset management and investment decisions. The blend of accounting, finance, and computer science that this course offers is ideally suited for preparing students for a variety of careers on Wall Street, including quantitative investing. This course and associated skills would clearly distinguish your undergraduate students from much of the competition—especially if they were seeking a job at a quant fund.”

- former Global Head of Equity Research, Blackrock

“The biggest difference between equity investing today and a few decades ago is the sheer volume and velocity of the financial information that must to be processed quickly. As a result, big data analytics and quantitative investment techniques rank high on the strategic agenda of most equity fund managers today. Of particular shortage are analysts who can combine data analytic skills with a deep understanding of the financial information that can be extracted from corporate reports. This is the type of investment professional our business schools should be training more of today.”

- former Head of US Equity Research; Co-head of N. America Active Equity Strategies, Global Head of Active Equity Research, Blackrock; Co-founder and General Partner, Nipun Capital

“I’ve seen astrophysicists who can value complex derivatives without any knowledge of finance or accounting, computer scientists who can code up stock selection algorithms without any understanding of valuation, and accounting and finance majors who are clueless about data. The key to success is to be able to analyze markets through multiple different lenses. Know finance and accounting: this will give you an edge over math-types. But also know how to design and backtest forecasting models using Big Data: this will give you an edge over MBA-types. This class offers an outstanding blend of these skills, and is exactly the type of class students need to take if they want to get the best jobs with the best firms.”

- former Vice President, Citadel Investment Group

“The Big Data revolution is here. To be successful in today’s environment, students need to have business skills, need to be able to extract insights from data, and need to know how to communicate those insights to others. Most individuals have one of those three talents. Those individuals who can do two or more are rare and very highly valued. The class looks challenging, but if you can succeed, you’ll be able to do all three. Students who like to code will benefit from the business applications; and students who like business will benefit from learning how to write code. The hands-on nature of the class looks truly amazing. I wish I could have taken it as an undergrad.”

- former Exotic Derivatives & CDO Trader, JP Morgan
"The Wall Street Journal recently proclaimed that the Quants Rule Wall Street Now. My own experience confirms that this is no overstatement. But quantitative skills alone are not enough. They need to be integrated with good investment intuition and a detailed knowledge of the structure and limitations of the underlying data. This course should give you the right combination of skills to help you on your way to becoming a successful quant."

- former Managing Director, Blackrock

ABOUT PROFESSOR TAYLOR

Professor Daniel Taylor's research focuses on opportunistic/fraudulent reporting and insider trading. His research appears in leading academic journals; has been featured in the popular media, including such outlets as the Wall Street Journal, the New York Times, and the Economist; has been cited in final rulings by the U.S. Securities and Exchange Commission; and has informed investigations by multiple enforcement agencies, including the FBI and DoJ. He received a PhD in Business from Stanford University, a MA in Economics from Duke University, and a BS in Economics from the University of Delaware.