Description
This course compliments and interacts with the research investigation of the Wharton Linear Models Group. The major contributors to the group are: Richard Berk, Andreas Buja, Lawrence Brown, Edward George, Arun Kuchibhotla, Weijie Su, Kai Zhang, and Linda Zhao.

Philosophy
We want to build a more realistic and rigorous formulation for what is going in real statistical practice. Following this philosophy, we build assumption-lean formulas for regression type situations, including generalized linear models.

Two Main Themes
- Assumption-lean Model
 - Build comprehensive theories and methodologies for interpreting and analyzing the situation when conventional linear model assumptions fail. What are the consequences and what are the right things to do?
- Post-Selection Inference (PoSI)
 - Concentrate on inference after variables selection in usual and assumption-lean linear model
 - Explore inference after other model building, such as transformation

Possible Topics
- Assumption-lean framework and methodology
 - Ordinary linear model
 - Generalized linear model
- Post-Selection Inference (PoSI)
 - Conventional set-up
 - Assumption-lean set-up
 - Post selection conditional inference (Stanford group)
- Model selection methods
 - Cp and GCp
 - Bootstrap
- Semi-supervised regression
 - Continuous response
 - Classification
 - Average Treatment Effect (ATE)
- Asymptotic Semi-parametric theory
 - General theory
 - Application to assumption-lean model
- Causality in the assumption-lean framework

Logistics
- Weekly in-class presentation (mostly by students) and discussion (1.5h)
- Join active on-going group meeting once a week (Optional, might be too difficult)